Historia del televisor
El concepto de televisión (visión a distancia) se puede rastrear hasta Galileo Galilei y su telescopio. Sin embargo, no es hasta 1884, con la invención del Disco de Nipkow de Paul Nipkow cuando se hiciera un avance relevante para crear un medio. El cambio que traería la televisión tal y como hoy la conocemos fue la invención del iconoscopio de Vladimir Zworkyny Philo Taylor Farnsworth. Esto daría paso a la televisión completamente electrónica, que disponía de una tasa de refresco mucho mejor, mayor definición de imagen y de iluminación propia.
Primeros desarrollos
En los orígenes de la televisión se expusieron diversas soluciones mecánicas, como el disco de Nipkow, en 1910; sin embargo, se desecharon estos sistemas mecánicos en beneficio de los sistemas de captación totalmente electrónicos actuales.
En 1925 el inventor escocés John Logie Baird efectúa la primera experiencia real utilizando dos discos, uno en el emisor y otro en el receptor, que estaban unidos al mismo eje para que su giro fuera síncrono y separados por 2 mm.
Las primeras emisiones públicas de televisión las efectuó la BBC en Inglaterra en 1927; y la CBS y NBC en Estados Unidos en 1930. En ambos casos se utilizaron sistemas mecánicos y los programas no se emitían con un horario regular.
La primera emisora con programación y horario regular fue creada en 1930 en Berlín por la sección local del Partido Nacional Socialista Obrero Alemán pero los responsables de la propaganda Nazi no se percataron de las posibilidades del medio y continuaron utilizando la radio.
Las emisiones con programación se iniciaron en Inglaterra en 1936, y en Estados Unidos el día 30 de abril de 1939, coincidiendo con la inauguración de la Exposición Universal deNueva York. Las emisiones programadas se interrumpieron durante la Segunda Guerra Mundial, reanudándose cuando terminó.
Televisión electrónica
En 1937 comenzaron las transmisiones regulares de TV electrónica en Francia y en el Reino Unido. Esto llevó a un rápido desarrollo de la industria televisiva y a un rápido aumento de telespectadores, aunque los televisores eran de pantalla pequeña y muy caros. Estas emisiones fueron posibles por el desarrollo de los siguientes elementos en cada extremo de la cadena: el tubo de rayos catódicos y el iconoscopio.
Captación de imagen
El iconoscopio está basado en el principio de emisión fotoeléctrica: la imagen se proyecta sobre un mosaico formado por células fotoeléctricas que emiten electrones que originan la señal de imagen. Se usó en Estados Unidos entre 1936 y 1946.
El vidicón es un tubo de 2,2 cm de diámetro y 13,3 cm de largo basado en la fotoconductividad de algunas sustancias. La imagen óptica se proyecta sobre una placa conductora que, a su vez, es explorada por el otro lado mediante un rayo de electrones muy fino.
El plumbicón está basado en el mismo principio que el vidicón, sin embargo, su placa fotoconductora está formada por tres capas: la primera, en contacto con la placa colectora, y la tercera están formadas por un semiconductor; la segunda, por óxido de plomo. De este modo, se origina un diodo que se halla polarizado inversamente; debido a ello, la corriente a través de cada célula elemental, en ausencia de luz, es extraordinariamente baja y la sensibilidad del plumbicón, bajo estas características, muy elevada.
La señal de vídeo
La señal transducida de la imagen contiene la información de ésta, pero es necesario, para su recomposición, que haya un perfecto sincronismo entre la deflexión de exploración y la deflexión en la representación.
La exploración de una imagen se realiza mediante su descomposición, primero en fotogramas a los que se llaman cuadros y luego en líneas, leyendo cada cuadro. Para determinar el número de cuadros necesarios para que se pueda recomponer una imagen en movimiento así como el número de líneas para obtener una óptima calidad en la reproducción y la óptima percepción del color (en la TV en color) se realizaron numerosos estudios empíricos y científicos del ojo humano y su forma de percibir. Se obtuvo que el número de cuadros debía de ser al menos de 24 al segundo (luego se emplearon por otras razones 25 y 30) y que el número de líneas debía de ser superior a las 300.
La señal de vídeo la componen la propia información de la imagen correspondiente a cada línea (en el sistema PAL 625 líneas y en el NTSC 525 por cada cuadro) agrupadas en dos grupos, las líneas impares y las pares de cada cuadro, a cada uno de estos grupos de líneas se les denomina campo (en el sistema PAL se usan 25 cuadros por segundo mientras que en el sistema NTSC 30). A esta información hay que añadir la de sincronismo, tanto de cuadro como de línea, esto es, tanto vertical como horizontal. Al estar el cuadro dividido en dos campos tenemos por cada cuadro un sincronismo vertical que nos señala el comienzo y el tipo de campo, es decir, cuando empieza el campo impar y cuando empieza el campo par. Al comienzo de cada línea se añade el pulso de sincronismo de línea u horizontal (modernamente con la TV en color también se añade información sobre la sincronía del color).
La codificación de la imagen se realiza entre 0 V para el negro y 0,7 V para el blanco. Para los sincronismos se incorporan pulsos de -0,3 V, lo que da una amplitud total de la forma de onda de vídeo de 1 V. Los sincronismos verticales están constituidos por una serie de pulsos de -0,3 V que proporcionan información sobre el tipo de campo e igualan los tiempos de cada uno de ellos.
El sonido, llamado audio, es tratado por separado en toda la cadena de producción y luego se emite junto al vídeo en una portadora situada al lado de la encargada de transportar la imagen.
El desarrollo de la TV
Control Central en un centro emisor de TV.
Es a mediados del siglo XX donde la televisión se convierte en bandera tecnológica de los países y cada uno de ellos va desarrollando sus sistemas de TV nacionales y privados. En 1953 se crea Eurovisión que asocia a varios países de Europa conectando sus sistemas de TV mediante enlaces de microondas. Unos años más tarde, en 1960, se crea Mundovisión que comienza a realizar enlaces consatélites geoestacionarios cubriendo todo el mundo.
La producción de televisión se desarrolló con los avances técnicos que permitieron la grabación de las señales de vídeo y audio. Esto permitió la realización de programas grabados que podrían ser almacenados y emitidos posteriormente. A finales de los años 50 del siglo XX se desarrollaron los primeros magnetoscopios y las cámaras con ópticas intercambiables que giraban en una torreta delante del tubo de imagen. Estos avances, junto con los desarrollos de las máquinas necesarias para la mezcla y generación electrónica de otras fuentes, permitieron un desarrollo muy alto de la producción.
En los años 70 se implementaron las ópticas Zoom y se empezaron a desarrollar magnetoscopios más pequeños que permitían la grabación de las noticias en el campo. Nacieron los equipos periodismo electrónico o ENG. Poco después se comenzó a desarrollar equipos basados en la digitalización de la señal de vídeo y en la generación digital de señales, nacieron de esos desarrollos los efectos digitales y las paletas gráficas. A la vez que el control de las máquinas permitía el montaje de salas de postproducción que, combinando varios elementos, podían realizar programas complejos.
El desarrollo de la televisión no se paró con la transmisión de la imagen y el sonido. Pronto se vio la ventaja de utilizar el canal para dar otros servicios. En esta filosofía se implementó, a finales de los años 80 del siglo XX el teletexto que transmite noticias e información en formato de texto utilizando los espacios libres de información de la señal de vídeo. También se implementaron sistemas de sonido mejorado, naciendo la televisión en estéreo o dual y dotando al sonido de una calidad excepcional, el sistema que logró imponerse en el mercado fue el NICAM.
La televisión en color
Ya en 1928 se desarrollaron experimentos de la transmisión de imágenes en color. En 1940, el mexicano Guillermo González Camarenapatenta, en México y EE.UU., un Sistema Tricromático Secuencial de Campos.
En 1948, Goldmark, basándose en la idea de Baird y Camarena, desarrolló un sistema similar llamado sistema secuencial de campos. El éxito fue tal que la Columbia Broadcasting System lo adquirió para sus transmisiones de TV.
El siguiente paso fue la transmisión simultánea de las imágenes de cada color con el denominado trinoscopio. El trinoscopio ocupaba tres veces más espectro radioeléctrico que las emisiones monocromáticas y, encima, era incompatible con ellas a la vez que muy costoso.
El elevado número de televisores en blanco y negro no exigió que el sistema de color que se desarrollara fuera compatible con las emisiones monocromas. Esta compatibilidad debía realizarse en ambos sentidos, de emisiones en color a recepciones en blanco y negro y de emisiones en monocromo a recepciones en color.
En búsqueda de la compatibilidad nace el concepto de luminancia y de crominancia. La luminancia porta la información del brillo, la luz, de la imagen, lo que corresponde al blanco y negro, mientras que la crominancia porta la información del color. Estos conceptos fueron expuestos por Valensi en 1937.
En 1950 la Radio Corporation of America, (RCA) desarrolla un tubo de imagen que portaba tres cañones electrónicos, los tres haces eran capaces de impactar en pequeños puntos de fósforo de colores, llamadosluminóforos, mediante la utilización de una máscara, la Shadow Mask o Trimask. Esto permitía prescindir de los tubos trinoscópicos tan abultados y engorrosos. Los electrones de los haces al impactar con los luminóforos emiten una luz del color primario correspondiente que mediante la mezcla aditiva genera el color original.
Mientras en el receptor se implementaban los tres cañones correspondientes a los tres colores primarios en un solo elemento; en el emisor (la cámara) se mantenían los tubos separados, uno por cada color primario. Para la separación se hace pasar la luz que conforma la imagen por un prisma dicroico que filtra cada color primario a su correspondiente captador.
Sistemas actuales de TVC
El primer sistema de televisión en color ideado que respetaba la doble compatibilidad con la televisión monocroma se desarrolló en 1951por un grupo de ingenieros dirigidos por Hirsh en los laboratorios de la Hazeltime Corporation en los EE.UU. Este sistema fue adoptado por la Federal Communication Commission de USA (FCC) y era el NTSC que son las siglas de National Television System Commission. El sistema tuvo éxito y se extendió por toda América del Norte y Japón.
Las señales básicas que utiliza son la luminancia (Y), que nos da el calor y es lo que se muestra en los receptores monocromos, y las componentes de color, las dos señales diferencia de color, la R-Y y B-Y (el rojo menos la luminancia y el azul menos la luminancia). Esta doble selección permite dar un tratamiento diferenciado al color y al brillo. El ojo humano es mucho más sensible a las variaciones y definición del brillo que a las del color, esto hace que los anchos de banda de ambas señales sean diferentes, lo cual facilita su transmisión ya que ambas señales se deben de implementar en la misma banda cuyo ancho es ajustado.
El sistema NTSC modula en amplitud a dos portadoras de la misma frecuencia desfasadas 90º que luego se suman, modulación QAM o en cuadratura. En cada una de las portadoras se modula una de las diferencias de color, la amplitud de la señal resultante indica la saturación del color y la fase el tinte o tono del mismo. Esta señal se llama de crominancia. Los ejes de modulación están situados de tal forma que se cuida la circunstancia de que el ojo es más sensible al color carne, esto es que el eje I se orienta hacia el naranja y el Q hacia los magentas. Al ser la modulación con portadora suprimida hace falta mandar una salva de la misma para que los generadores del receptor puedan sincronizarse con ella. Esta salva oburst suele ir en el pórtico anterior del pulso de sincronismo de línea. La señal de crominancia se suma a la de luminancia componiendo la señal total de la imagen.
Las modificaciones en la fase de la señal de vídeo cuando ésta es transmitida producen errores de tinte, es decir de color (cambia el color de la imagen).
El NTSC fue la base de la que partieron otros investigadores, principalmente europeos. En Alemania se desarrolló, por un equipo dirigido por Walter Bruch un sistema que subsanaba los errores de fase, este sistema es el PAL, Phase Altenating Line.
Para ello la fase de la subportadora se alterna en cada línea. La subportadora que modula la componente R-Y, que en PAL se llama V, tiene una fase de 90º en una línea y de 270º en la siguiente. Esto hace que los errores de fase que se produzcan en la transmisión (y que afectan igual y en el mismo sentido a ambas líneas) se compensen a la representación de la imagen al verse una línea junto a la otra, Si la integración de la imagen para la corrección del color la realiza el propio ojo humano tenemos el denominado PAL S (PAL Simple) y si se realiza mediante un circuito electrónico el PAL D (PAL Delay, retardado). El PAL fue propuesto como sistema de color paneuropeo en la Conferencia de Oslo de 1966. Pero no se llegó a un acuerdo y como resultado los países de Europa Occidental, con la excepción de Francia, adoptaron el PAL mientras que los de Europa Oriental y Francia el SECAM.
En Francia se desarrolló por el investigador Henri de France un sistema diferente, el SECAM, « SÉquentiel Couleur À Mémoire » que basa su actuación en la trasmisión secuencial de cada componente de color moduladas en FM de tal forma que en una línea se manda una componente y en la siguiente la otra componente. Luego el receptor las combina para deducir el color de la imagen.
Todos los sistemas tenían ventajas e inconvenientes. Mientras que el NTSC y el PAL dificultaban la edición de la señal de vídeo por su secuencia de color en cuatro y ocho campos, respectivamente, el sistema SECAM hacía imposible el trabajo de mezcla de señales de vídeo.
EN ESTE VEMOS COMO HA TENIDO UN AVANCE LA TECNOLOGÍA DESDE LA ANTIGÜEDAD HASTA LO MAS MODERNO.
ResponderEliminar